UNM-PNM STATEWIDE MATHEMATICS
CONTEST XXXVI

SECOND ROUND SOLUTIONS

We begin with a beautiful solution, provided by L.S. Hahn, of part of Problem 8 from
the Fall 2003 UNM-PNM Math contest which asked the following:

8. Farmer Brown has eight logs, each of length 10 feet. What is the maximum area which
he can enclose with the logs? For example, he could make a rectangle of height 10 feet
and width 30 feet or a square with each side having length 20 feet. In the first case, he
has enclosed 300 square feet and in the second case 400 square feet. The second choice
is of course better than the first but what is the largest area which Farmer Brown can
enclose?

It was stated in the solution that the maximum enclosed area will come from a regular
octagon. Suppose that you have an octagon ABCDEFGH of maximal area. First, it is
sufficient to consider the case where the octagon is conver, that is any line segment joining
two points in the octagon lies entirely within the octagon. To see this, suppose the octagon
fails to be convex, say, at the vertex B. Then the angle ABC can be flipped outwards and
this will increase the total area, violating the hypothesis that ABCDEFGH had maximal
area.

Next, suppose we draw the line segment AFE, splitting the octagon into two pentagons.
Each of these pentagons must have maximal area, under the constraint that four of its sides
have fixed length (namely 10 feet), or else we could construct an octagon of larger area.

Consider now the angle ACE. We claim that this is a right angle. Indeed, viewing the
triangles ABC' and CDE as fixed and allowing the angle ACE to vary, we know that the
triangle AC'E must have maximal area because the pentagon ABCDE has maximal area and
this pentagon is the sum of the two fixed triangles and the triangle ACE. Thus we have a
triangle AC'E with the lengths of AC and CF fixed and we would like to maximize its area.
This happens precisely when ACFE is a right angle (this is a good exercise).

It follows then that the point C is on the circle having AE as its diameter. A similar
argument applies to show that the angles ABE, ADE, EFA, EGA, and EHA are right
angles. Thus all eight vertices of the octagon lie on a circle with diameter AE. Since all the
sides must have equal length (10 feet), this shows that the octagon is regular.

1. We'll begin with the required problem about the current year 2004.

a. Give the prime factorization of 2004.

b. How many positive integers divide 2004 evenly?



We find, for part a, that 2004 = 22 - 3 - 167.
As for part b a divisor of 2004 will look like

2¢30167¢

where 0 < a<2,0<b<1,0<c¢<1. Thus there are 3 choices for a and two choices
for b and ¢ making a total of 12 divisors of 2004. Of course, one can also solve this
problem by finding the divisors explicitly.

2. Here is another problem concerning prime numbers.

a. Let L(X) = 12X 4+ 115. Find the smallest integer n > 1 so that L(n) is not a prime
number.

b. Does there exist an integer ¢ > 1 so that an + 1 is a prime number for all n > 17
Justify your answer.

c. Suppose P(X) = a4X% + aq 1 X%t + ...+ a1 X + ao is a polynomial where the
coefficients ay,...,aq are integers, ag # 0, and d > 1. Can P(n) be a prime
number for all integers n > 1 when the degree d is arbitrary? Justify your answer.

For part a we find that L(5) = 175 is not a prime number while L(1), L(2), L(3), and
L(4) are each prime.

The answer to b is NO: consider n =a+2. We find an+1 =a*+2a+1 = (a + 1)?
which is never a prime number since a > 1.

The answer to c is also NO but this is a little trickier to see. If ag is not 0 or &1 then
we see that P(kag) is not prime for k large: indeed, aq divides P(kay) and must be a
proper divisor if £ is large since P(X) approaches plus or minus infinity as X grows.
If ap = 0 then X divides P(X) and so for X large P(X) will never be prime. Suppose
then that ap = £1. Consider the polynomial Q(X) = P(X + n). Since Q(0) = P(n)
we can assume that Q(0) is not 0,1, or —1. Arguing as before Q(m@(0)) must be
composite when m is sufficiently large but Q(m@(0)) = P(mQ(0) + n).

Another way to solve b, suggested by Jacob Hobbs and Ila Varma of La Cueva
High School and also by Rima Turner of Los Alamos High School, is the following.
Suppose that an + 1 is a prime number whenever n is positive. Then we claim that a
is even. Indeed, if a is odd then 3a + 1 is even and larger than 2 and consequently is
not prime. Next we claim that 3 must divide a. If not, then there are two possibilities:
either a leaves a remainder of 1 when divided by 3 (in which case 5a + 1 is properly
divisible by 3 and hence not prime) or else a leaves a remainder of 2 when divided by
3 (in which case 4a + 1 is properly divisible by 3).

In general, we claim that if p is any prime number then p must divide a. Indeed suppose
p does not divide a. Then we can always find b > p so that ab leaves a remainder of
p — 1 when divided by p. But then ab + 1 is properly divisible by p and hence not
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prime. As to the existence of b > p so that ab + 1 is divisible by p, consider the
numbers a(p + 1),a(p+2),...,a(2p — 1). We see that none of these numbers, or their
differences, is divisible by p. Thus they must leave different remainders when divided
by p. But there are only p — 1 possible remainders and p — 1 numbers on our list and
this establishes the existence of b as claimed.

Of course a cannot be divisible by every prime number and thus we have a contradiction
and it cannot be the case that an + 1 is always prime.

Finally, Bob Cordwell of Manzano High School was the only person to solve part (c)
correctly (his solution was essentially identical to the one presented above).

3. The sequence of Fibonacci numbers is:
1,1,2,3,5,8,13,21,34,. ..

The first two elements of the sequence are 1 and then each successive member is
obtained by adding the two previous elements: F,, = F,_; + F,_s where F,, denotes
the n'® number in the sequence.

a. Find Fi;, the 17 Fibonacci number.

b. Show that
F, F, F

<2<,
F F3  F;
i.e. show that for any n > 0 we always have Fy,/Fo, 1 < Fopyo/Foni1-

c. What value must
F, n+1

F,
approach as n grows, assuming that it does approach some value?

Part a is a purely computational problem and the answer is 1597.

For part b we will use the following fact: suppose a, b, c,d are positive integers and

a/b < ¢/d. Then
a a+c c

- < < -.
b b+d d
. .« . . . . + .
One can prove these inequalities by cross-multiplying: for example § < 3= if and
only if ab + ad < ba + bc which is true by hypothesis. We use this then to consider
the successive fractions Fy1/F,. We start with F,/F; = 1/1 and F3/F, = 2/1. In

particular since

F F:
-2 23
F B
we conclude from above that
F_FR+F_F_F
F, "F+F F5 F
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To make the next step, we add the last two fractions in the above equation to find

Fi _FitFy_F
F;, F;+F F,

and adding one more time gives what we want
F, F F
PP
Fs F5 Fy

It is then clear that this procedure can continue ad infinitum.

For part ¢ note that we have the relation

Fn—|—2 =1+ Fn )
Fn—|—1 Fn—|—1
Letting a be the number which FI’;—ZI approaches as n grows, we see that
1
a=1+—
a

ora®> —a—1=0. Thus

and since o > 1 we must have a = 1+2‘/5.

One very interesting solution to parts (b) and (c) of this problem was given by Zach
Labry from the Albuquerque Academy. He uses the Binet formula which gives a closed
expression for the N*" Fibonacci number, namely

(5°) - (5°)
7

Letting o = 225 and 8 = 1=Y5 we see, for part (c), that
g 2 2

F, =

Fopy1 ot —pntt
F,  ar—pn

Since |5™| gets closer and closer to 0 as n grows, we see that

Fn—|—1

gets closer and closer to




and this establishes part (c).

The Binet formula can also be used nicely to prove part (b). In particular we need to

ShOW 2 2 2n+2 2n+2
an_ﬁn an—i— _Bn—f—

2n—1 __ R2n-—1 2n+1 __ A2n+1"
a B o B

Cross-multiplying and simplifying, this is the same as showing that

a2n+262n—1 + O{2n—1ﬁ2n—|—2 < a2n+1ﬁ2n +a2n/62n+1.

anlﬁanl

We now divide through this equation by o . Since this is a negative number,

this will reverse the inequality sign giving
2B+ aB <o+ B3

The important thing to note here is that the variable n has disappeared and we now
have a simple inequality of real numbers which we leave as an exercise.

Finally, Jacob Hobbs of La Cueva High School and Dimitar Bounov of United
World College provided the following beautiful inductive proof of part (b). We wish

to show that
FQn F2n—}—2

<
F2n—1 F2n+1
when n > 1. For n = 1, this is a simple calculation so assume that n > 2. Then we
have

Fonio — 14 Fon
Fonia Fona
and
FQn =1+ F2n—2
F2n—1 F2n—1
Fy, Fonyo - .
So 72 < Forts if and only if
Fon o < Fon,
Fon1 Fopya
Taking the reciprocal this is equivalent to
Fon 1 Fonpa
Fons Fon,

and then iterating the above argument shows that this last inequality holds if and only
if

Fon_s < Fo,
F2n—3 F2n—1
which is true by the inductive hypothesis.
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4. David tosses a quarter in the air and watches it land on a checker board. Suppose that
the length and width of each of the 64 squares in the checker board is exactly twice
the diameter of the quarter and also suppose that the quarter lands entirely within the
checker board, with equal probability at any point.

a. What is the probability that the quarter lands entirely within one of the 64 squares?
b. What is the probability that the quarter touches exactly three of the 64 squares?

Suppose for the moment that the diameter of the quarter is one inch and the squares in
the checker board are two inches by two inches (the units of measure make no difference
in the answer to this question). For a given square, the area is 4 square inches and
in order for the quarter to land entirely within the square this would mean that the
center of the quarter has to land within a one inch by one inch square, centered in the
two by two square. So the total area of good throws is 64 square inches. The total area
of allowed throws, on the other hand, is 225 square inches because the quarter must
land entirely within the checkerboard and this eliminates a one half inch band all the
way around the board. So the answer here is 64/225.

To find the probability that the quarter touches exactly two squares, note that the two

squares must be adjacent. Counting up the number of adjacent squares, we find 7 in

each of the 8 rows making 56 and then 7 more in each of the 8 columns for 56 more.

Thus there are 112 adjacent squares in which the quarter could land. For each pair of

adjacent squares there is an inner square which is one inch by one inch in which the

center of the quarter can land if it is contained entirely within these two squares and
112

touches both. Thus the probability of landing on exactly two squares is 53z.

To find the probability that the quarter touches 4 squares, note that there are 49

vertices on the board where 4 squares meet. In order for the quarter to touch all 4 it

must land within a circle of radius 1/2 centered at the vertex where the squares meet.
497

Thus this is an area of 4%” and the probability of touching 4 squares is 4.

The only remaining possibility is that the quarter touches 3 squares. Since it must
touch exactly one, two, three, or four squares and since these possibilities are mutually
exclusive, the probability that it touches exactly three squares is

64 112 497 196 — 49
225 225 900 900

5. Way back in 1901, Jacqueline’s great grandfather deposited a brand new 1901 quarter
from the San Francisco mint in the bank. This 1901 quarter is, however, a VERY rare
coin, worth $40,000 today in 2004.

a. At 20% annual interest, will the quarter be worth more or less than one dollar after
8 years?

b. Assuming that the quarter earned 10% annual interest for the entire 103 year period,
would it be worth more or less than $40,0007
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c. Assuming that the quarter earned 13% annual interest for the entire 103 year period,
would it be worth more or less than $40,0007

Note that your answers in b and ¢ must be justified— please explain clearly your
method of calculating and how you plan to make the necessary computations without
a calculator.

If an investment of P is made at an interest rate of 2%, compounded annually, then
after ¢ years the investment is worth

N
P{l1+—).
( * 100)
Thus for part a we need to compute 0.25(1.2)8. We find

(1.2)% = 1.44,
(1.2)* = (1.44)? > 2,
(1.2)% = (1.2)*(1.2)* > 4.

So after eight years the quarter is worth more than one dollar.

For part b we try to find how long it takes for the quarter to double in value and then
extrapolate from this.

(1.1)* = 1.21,
(1.1)* = (1.21)? < 1.5,
(1.1)% < (1.21)(1.5) < 2.

Thus each after each 6 years the quarter has gone up in value by a multiple of less
than two. We have 102 = 17 - 6 so after 102 years the quarter is worth less than

$(0.25 - 2'7) = $21° = $(1024)(32) < $33, 000.
Finally, after 103 years the quarter will worth less than
$33,000 - 1.1 = $36, 300.
Note that these estimates are far from the best possible but are sufficient to answer
the question.
For part ¢ we need to find a bound from below rather than from above as the quarter

will end up being worth more than $40, 000.

1.13)> = 1.2769 > 1.276,
1.13)* = (1.13)%(1.13)* > (1.276)? = 1.628176 > 1.628,
1.13)% = (1.13)*(1.13)* > (1.628)(1.628) = 2.650384 > 2.65,
1.13)° = (1.13)%(1.13) > 2.65(1.13) = 2.9945.
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Here we see that we have almost exactly 3 as a lower bound but not quite so we need
to go back and improve the lower bounds a bit. So we find

1.13)> = 1.2769,

) = (1.13)%(1.13)% > (1.2769)? = 1.63047361 > 1.63,
1.13)% = (1.13)%(1.13)* > (1.63)(1.63) = 2.6569 > 2.656,
)P = (1.13)%(1.13) > 2.656(1.13) = 3.00128.

Now we have
(1.13)* > ((1.13)%)* > 3!,

As for 3! note that 3* = 81 > 80 so
3 > (80)(80)(27) > (80)(80)(25) = 80(2000) = 160, 000.

Thus after 99 years the quarter is worth more than $40,000 and thus after 103 years
it is worth well more than $40, 000.

Note that the key here is to raise 1.3 to a power until you find something which is close
to a whole number. In this case the power is not too large and so the computation is
doable. You should check to see what the smallest power of 1.3 is which is bigger than
2 and see if taking powers of 2 will work instead of the powers of three which we did.

Only one student successfully solved this problem, Clayton Shepard of the Albu-
querque Academy. His method was to successively square 1.1 (for part (b)) and 1.13
(for part (c)), rounding off whenever possible. Many others attempted similar compu-
tations but only Clayton was successful with the required estimates.

Carl Grover of La Cueva High School had the following very beautiful idea to do
5(b). Note that
1 n
(1+3)
n

gets closer and closer to e as n grows. Moreover this quantity increases as n increases.

In particular,
1 10
1+ — <e<3.
( * 10) ‘

Thus at 10% interest, after 100 years the quarter has increased in value by a factor of

1 100 10
1+ — < 3.
( + 10)

It is simple to get from here to a bound of less than $40,000 for the value of the quarter
after 103 years. This method does not work, however, for part (c) because in this case
one needs a lower bound.



6. Your school teacher presents you with the following problem: she gives you a hat, con-
taining 5 slips of paper, each with a different number on it. You know nothing about
the numbers: they could be of any size, positive or negative. You are asked to draw
numbers successively out of the hat and look at them. The problem is to stop at the
moment you have selected the largest of the 5 numbers. Of course, since you do not
know what any of the numbers are in advance, it is impossible to solve this problem
with certainty.

a. Suppose you employ the following method: you look at and discard one number
which we will call A. Next you continue to draw until you find a number larger
than A and stop here. What is the probability that you have stopped at the
largest of the five numbers? Note that the definition of probability here is the
total number of cases in which you are successful divided by the total number of
all possible cases.

b. Assuming now that there are 100 slips of papers in the hat, each with a different
number on it, give a method which allows you to stop at the moment you have
selected the largest number more than 1/4 of the time. Of course you need to
prove that the method will be successful more than 1/4 of the time.

Note that the definition of the success rate of your method is the total number of
possibilities in which it stops at the largest number divided by the total number of all
possibilities successful or not.

For part a, we break it down into cases. Suppose we label the numbers
A<B<(C<D<E.

So let’s suppose the first number drawn is A. Here you will only win if £ comes second
and there are 6 such possibilities. Next let’s suppose the first number drawn is B.
Then you win if E comes next (6 cases) or if A comes next and then E (2 cases). The
most difficult case to analyze is where the first number drawn is C'. Here you can win
if £ is drawn second (6 cases) or E is drawn third while the second draw is A or B (4
cases) or if E' is drawn fourth while the second and third choices are A and B (2 cases).
Next, suppose D is drawn first. Then you win all 24 possible cases here. Finally, if E
is drawn first then you lose. The total number of winning cases is

6+6+2+6+4+4+2+24=50.

So this strategy is successful 50/120 = 5/12 of the time.

For part b a similar method works. You look at and discard fifty numbers and then
stop as soon as you draw a number which is bigger than any of the first fifty (again,
if you never find a larger number, then the method fails). As in the first part, call
the second largest number B and the largest number A. Then B will occur within the
first 50 numbers drawn exactly % of the time: indeed each instance where B occurs
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within the first 50 has a mirror image, where the order is reversed, with B occurring
in the second 50 selections. Assuming that B occurs within the first 50 draws, there
is greater than 1/2 probability that A occurs in the second 50 draws (to be precise,
there is a 50/99 probability). Thus this method successfully stops at A more than 1/4
of the time.

Bob Cordwell of Manzano High School, Rima Turner of Los Alamos High School,
Zach Labry of the Albuquerque Academy, Carl Grover of La Cueva High School,
Brian Geistwhite of Farmington High School, Alan Hshieh of Las Cruces High
School, Jacob Hobbs of La Cueva High School, and Adolf James of the Albuquerque
Academy were able to shorten the argument for part (a) substantially as follows. If
A is drawn first then there is a 1/4 probability of stopping with E. If B is drawn
first there is a 1/3 probability of stopping with E. If C is drawn first there is a 1/2
probability of stopping with E and so on. Adding things up gives 5/12 as above but
not as much counting is necessary.

7. An integer—valued point in the zy—plane is a point (a,b) where both a and b are integers.
Let A, denote the number of integer-valued points on or inside a circle of radius n
centered at the origin. As n grows larger and larger what value will

An
n2
approach? Justify your answer.

As you may be able to guess from the similar question on the Fall exam, the answer
here is 7. To see this, suppose n is some large number and let C'; be a circle of radius
n — 2 centered at the origin and Cs a circle of radius n + 2. To each integer point
(x,y) contained on or inside C; we associate the square, with side of length one, whose
southwest corner is placed at (x,y). All of these squares are entirely contained within
C, the circle of radius n and so their total area is at most the area of C. Thus if b, is
the number of integer points contained inside of C'; we find that

b, < mn?.
By definition a, = b,12 so

G, bn+2 <
== .
(n+2)2 (n+2)?2—

It follows that

and thus as n grows we find that



can approach a value of at most .

For the opposite inequality, let ¢, be the number of integer valued points in C,. Then
we see that ¢, > 7n? since the entire circle of radius n is covered by the squares placed,
as before, at integer points in Cy: to see this suppose that P € C is not contained in
any square whose southwest corner is at an integer valued point of Cs. Let S be the
unique unit square, with integer valued coordinates, containing P and so that P is to
the northeast of its soutwest corner. Call the southwest corner of this square (a,b).
Then the point (a, b) has a distance of at most /2 from P and so is a point in C, and
we have reached the desired contradiction. As above we have a, 12 = ¢, and so

2
Gni2  _ Cn ™

h+2°  m+2P = (nt2)e

Arguing as above shows that if %4 approaches a value then this value must be at least
7. Combining this with the first part of the argument above we find that °* must
approach 7 as n grows.

The only student in the contest to provide a solution like the one above was Jeff
Dimiduk of Eldorado High School. An interesting variant was provided by Bob
Cordwell of Manzano High School. In particular, Bob bounds the number of squares
which the circle can touch but not contain. In particular, the circle of radius n has
circumference 2nm. On the other hand, a segment of length < 1 of this circumference
can intersect at most 4 squares. Thus the number of squares which the entire circum-
ference can intersect is at most 8nm + 1. We leave as an exercise how to conclude the
argument from this point.

11



