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February 6, 2016 First Round Three Hours

1. Suppose there are 9 lights arranged on tic tac toe board so that one is in each square. Suppose
further that there are six light switches one for each row and column. Flipping any of these
switches turns on all lights that are off and turns off all lights that are in the column/row
controlled by this switch. If there is exactly one light on, can you turn all the lights on using
the given switches? As in all problems you need to explain your answer.

Solution: Let us consider the problem on a 2 by 2 board. Starting with 1 light on and 3 off,
a direct inspection shows that flipping a switch will result in either 1 light on and 3 lights off,
or 3 lights on and 1 light off.

1 0
0 0

−→
0 1
0 0

or
0 0
1 0

or
1 1
0 1

or
1 0
1 1

Notice that the difference between the lights that are on and the lights that are off is 2. This
is an invariant preserved after flipping any switch. Thus, no matter how we flip the switches
we cannot have them all on.

The 3 by 3 case can be reduced to the 2 by 2 case by selecting a 2 by 2 board, which includes
the light that is on, from the 3 by 3 one (select four boxes that are in two fixed columns and
in two fixed rows including the box with the light on). Flipping the switches in the remaining
row or column does not change the lights in the picked 2 by 2 square. Since we cannot turn all
lights on in the 2 by 2 square we cannot turn them all on in the 2 by 3 square.

0 0 0
0 0 1
0 0 0

2. A student is offered two different after school jobs. One pays $10 an hour, the other pays $100
for the first hour, but the hourly rate decreases by half for each additional hour worked. What
are the maximum number of hours the student can work at the second job, so that his total
earnings in the second job are more than the total earnings in the first? Note: You are asked
to find the maximum full hours of work (i.e. integer number) that maximize the earnings.

Solution: In the job paying $10 an hour, if the student works for n hours he will earn 10n
dollars. In the other job, he will earn

100 + 50 + · · · 100/2n−1 = 100

(

1 +
1

2
+

1

22
+ · · ·+

1

2n−1

)

=
100(1− 1

2n
)

1− 1

2

=
200(2n − 1)

2n

dollars. So we need to determine n so that

200(2n − 1)

2n
> 10n

i.e., 200(2n − 1) > 10n2n and 200 > 10n so n < 20. The maximum n is 19. In the first job
the student will earn 190 dollars and in the second the student will earn 200− 200/219 dollars
which is just a little bit less than 200 dollars.

3. A school purchased 4 peach trees, 4 apricot trees and 6 cherry trees that they want to plant in
a row on the school grounds. If the trees are planted in random order, what is the probability
that no two cherry trees are planted next to each other?
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Solution: The peach and apricot trees can be thought of as a single type of trees, i.e., we
can treat them as indistinguishable since either of them is a ”good” divider of the cherry trees.
Thus we will think of the peach and apricot trees as dividers for the cherry trees. Since we have
8 such dividers we have 9 places where we could place the cherry trees. As there are 6 cherry
trees there are C(9, 6) = 9·8·7

3!
= 84 ways of placing the cherry trees so that none touch. Here

C(9, 6) denotes the number of ways we can choose 6 objects out of 9 distinct objects. On the
other hand, since there are a total of 14 trees there are C(14, 6) = 14·13·12·11·10·9

6!
= 3003 ways of

placing the cherry trees without any conditions. Thus, the probability that no two cherry trees
are planted next to each other is 84

3003
= 12

429
= 4

143
.

4. A farmer’s house is in the shape of a convex pentagon with perimeter P and area A. The yard
around the house includes all points that are at a distance at most 20m from the house. Find
the area of the farmer’s lot (yard plus house).

Solution: Let us describe all points in the yard. Clearly along every side of the house we
should add a rectangular area of width 20m. On the other hand, at each of the corners of the
house the yard will be a sector of radius 20 between the sides of length 20 along the adjacent
sides. Alternatively, we can describe these sectors as being sectors of radius 20 and opening
complementary to 180o of the interior angle of the house at the corresponding corner (vertex).
As the sum of the interior angles αi of a convex pentagon is α1 + · · ·+ α5 = 3 · 180o the yard
sectors will have total opening of (180o − α1) + · · ·+ (180o − α5) = 5 · 180o − 3 · 180o = 360o,
i.e., a whole disc of radius 20. Therefore, the lot will be 400π + 20 · P + Am2corresponding to
the yard at the corners, the 5 rectangles along each of the sides and the interior of the house.

5. Show that if 19 points are chosen on a square of side of length 1 then there is a triangle with
vertices among these points whose area is at most 1

18
.

Solution: Divide the square in nine equal squares using lines parallel to the sides. At least
one of these squares will have three of the chosen points.

We have reduced the problem to showing that from a square of sides of length 1/3 we can cut a
triangle of area at most 1/18. To see this pick one of the points and draw a line through it parallel
to two of the opposite sides of the square. In this way we split the square in two rectangles of
sides x by 1/3 and y by 1/3 with x+ y = 1/3. Our triangle can have at most half of the area of
each of the obtained rectangles, so the total area is less than 1

2
· 1

3
· x+ 1

2
· 1

3
· = 1

6
(x+ y) = 1

18
.

6. For a positive integer k let σ(k) be the sum of the digits of k. For example, σ(1234) =
1 + 2 + 3 + 4 = 10 while σ(4) = 4. Let a1 = 20162016 and define an+1 = σ(an), n = 1, 2, 3, . . . .
Find a5.

Solution: One of the keys here is that σ(k) and k have the same remainder when divided by
9. Now, 2016 is divisible by 9 since σ(2016) = 9 is divisible by 9. Therefore, every power of
2016 is also divisible by 9. Therefore, if we can see that a5 is a single digit number then a5 = 9
as this is the only digit divisible by 9. Next we turn to this task.

Notice that a1 < 10, 0002016 = 104·2016 = 108064, hence a2 has less than 8064 digits which
shows that a2 = σ(a1) ≤ 9 · 8064 < 99 · 1000 < 99, 000. Thus a3 < 9 · 5 = 45. This implies
a4 = σ(a3) ≤ 12 (39 has the largest sum of its digits among the integers between 1 and 45).
Thus a5 has a single digit, which must be 9 as we already observed.

7. For a positive integer n let S(n) denote the function which assigns the sum of all divisors of
n. Show that if m and n are relatively prime positive integers then S(mn) = S(m)S(n). For
example, S(6) = 1+2+3+6 = 12, S(2) = 1+2 = 3 and S(3) = 1+3 = 4, so S(6) = S(2)S(3),
noting that 2 and 3 are relatively prime integers (they have no common divisor).

Solution: By definition S(n) = Σd|nd-the sum of all divisors of n, where for integers a and
b we write a|b if a divides b. Let a1 = 1, a2, . . . , ak = m be the different divisors of m and
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b1 = 1, b2, . . . , bl = n all the divisors of b. Thus Σai = S(m) = a1 + a2 + · · · + ak and Σbj =
S(n) = b1+b2, · · ·+bl. Now, consider Σai bj = S(m)S(n) = (a1+a2+ · · ·+ak)(b1+b2, · · ·+bl).
Clearly every element in this sum is a divisor of mn. Furthermore, since m and n are relatively
prime it follows that if d|mn then either d = 1 or d is a product of two integers one of which
divides m, the other divides n and at least one of them is greater than 1. In other words d will
appear in the sum S(m)S(n) = Σai bj exactly once. This shows that S(mn) = S(m)S(n).

8. Find all non-negative integer solutions of the equation n(n + 1) = 9(m− 1)(m+ 1).
Answer: m=1, n=0 or m=3, n=8.
Solution: Considering the given equation as a quadric w.r.t n, we need to solve n2 + n −

9(m2 − 1) = 0. The roots are given by

n =
−1±

√

1 + 36(m2 − 1)

2
.

In particular, 1 + 36(m2 − 1) is an exact square, so 1 + 36(m2 − 1) = k2. Thus, we try to solve
the equation

(6m)2 = k2 + 35.

Since 35 = (6m)2 − k2 ≥ (6m)2 − (6m− 1)2 = 12m − 1 it follows that 1 ≤ m ≤ 3 taking into
account that m = 0 gives n < 0. Now, we can finish by considering the three possible cases
of the original equation. For m = 1 we have n = 0, m = 2 gives n(n + 1) = 27 which has no
solution, and m = 3 leads to n(n+ 1) = 9 · 8 hence (n+ 9)(n− 8) = 0 hence n = 8.

Another solution is obtained by completing the square (w.r.t. n) in the given equation is
equivalent to 36m2 − (2n+ 1)2 = 35, i.e.,

(6m+ (2n+ 1))(6m− (2n+ 1)) = 35.

Taking into account that m and n are non-negative integers and 35 = 35 · 1 = 7 · 5 we obtain
the answer.

9. Suppose every point in the plane is colored by one of two given colors, say red or blue. Given
a triangle ∆, show that there is a triangle in the colored plane whose vertices are of the same
color and is similar to the given triangle ∆.

Solution: First we show that there are three points of the same color such that one of the
points is midway between the other two. Indeed, consider any two points that are of the same
color, say blue. For ease of reference, think of taking the line through two blue points, call them
1 and 2; note that there are is at most one point of the same color then we are done using the
remaining points. Now that we have the labeled points 1 and 2, look at the two points, call
them 0 and 3, such that 1 is the midpoint between 0 and 2, and 2 is the midpoint between 1
and 3. If 3 is blue we are done. If 3 is red, consider the point 0. If 0 is blue, then 0, 1 and 3
are blue and we are done again. Finally, if 0 and 3 are red while 1 and 2 are blue, we consider
the midpoint between 0 and 3, which is also the midpoint between 1 and 2. This point, which
is either blue or red, together with either 0 and 3, or 1 and 2 will meet the wanted condition.

Now that we know that there are three blue (otherwise we can rename the points and reduce
to this case) points A, C ′ and B such that C ′ is the midpoint between the other two, take a
point C such that the triangle △ABC which is similar to the given triangle ∆. Let B′ and
A′ be the midpoints of the sides AC and BC respectively. Notice that each of the 5 triangles
△ABC, △A′B′C ′, △A′B′C, △AB′C ′ and △A′BC ′ is also similar to the given triangle. Now,
if any of the vertices of △B′A′C is blue, then one of the five triangles will be blue. In the other
case, all vertices of △B′A′C are red, so we are done again.
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10. Let P be a point on the triangle △ABC (inside or on the boundary). Let ra, rb and rc be the
distance from P to the sides BC, CA and AB, respectively.

a) Show that

ra · a + rb · b ≤ |PC| · c and also ra · b+ rb · a ≤ |PC| · c,

where a = |BC|, b = |CA| and c = |AB|.
b) Assuming the inequalities of part a), show that

|PA|+ |PB|+ |PC|

ra + rb + rc
≥ 2.

Solution: This is the so called Erdös-Mordell problem. Below is the solution given by V.
Komornik, The American Mathematical Monthly, Vol. 104, No. 1 (Jan., 1997), pp. 57–60.

a)

b b

b

b

A
b

B

b
C

b P ′

b

P

b B′bA′

Observe that it is enough to consider the case when P is on the side BC. Indeed, for P ′

inside the triangle, consider the point P which is the intersection of the line through C and P ′

and the side BC together with the points A′ and B′ on AC and BC, respectively, such that
A′B′ is parallel to AB. From the similarity of the △A′B′C and △ABC the inequality for P ′

follows from the inequality for P (by dividing the latter by the coefficient of similarity) and
conversely, the inequalities at P ′ imply those for P . In fact, this shows that if either of the

inequalities holds for one point in the angle ∠ACB (including the rays
−→
CA and

−−→
CB) then this

inequality holds for all points in the angle ∠ACB.
Next we will consider the case when P is on the side BC. The inequality ra ·a+rb ·b ≤ |PC| ·c

is actually obvious noting that the sum of the areas of △CPA and △CPB equals the area of
△ABC while |PC| · c is at least twice the area of of △ABC with equality iff CP is the altitude
through C. Thus the first inequality holds for all points in the angle ∠ACB.

b b

b

b

A
b

B

b
C

b

P

//

b

P ′

Now, the second inequality, ra · b+ rb · a ≤ |PC| · c, follows by considering the point P ′- the
reflection of P through the bisector of the angle ∠ACB. Notice that r′a = rb, r

′
b = ra while
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|P ′C| = |PC|. Now, writing the first inequality for P ′ shows that the second inequality holds
at P .

b) Recall the inequality x
y
+ y

x
= x2+y2

xy
≥ 2 for positive numbers x and y, which follows from

x2 + y2 − 2xy = (x− y)2 ≥ 0 with equality iff x = y.
Now, from the second inequality of part a) and the above inequality we have

|PA|+ |PB|+ |PC| ≥
rb · c+ rc · b

a
+

rc · a+ ra · c

b
+

ra · b+ rb · a

c

= ra

(

b

c
+

c

a

)

+ rb

( c

a
+

a

c

)

+ rc

(

a

b
+

b

a

)

≥ 2 (ra + rb + rc) .

Furthermore, it follows that equality is achieved iff a = b = c and then P is the center of the
equilateral triangle.


