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1. Given positive real numbers a, b, c and d such that
a

b
<

c

d
< 1, arrange the following five numbers in

order from least to greatest:
b

a
,
d

c
,
bd

ac
,
b + d

a + c
, 1.

Answer: 1 < d
c < b+d

a+c < b
a < bd

ac .

Solution: Multiplying the given inequality a
b < c

d < 1 by bd
ac yields d

c < b
a < bd

ac . Multiplying the given

inequality c
d < 1 by d

c yields 1 < d
c . Combining these two results, we have 1 < d

c < b
a < bd

ac . Now, d
c < b

a

implies ad < bc. Thus ad + cd < bc + cd, which implies d(a + c) < c(b + d), hence d
c < b+d

a+c . Similarly,

ad+ab < bc+ab yields b+d
a+c < b

a . These results determine the following ordering: 1 < d
c < b+d

a+c < b
a < bd

ac .

2. When added together, the perimeters of an equilateral triangle and a square have a total length of L.
Find the side length of the triangle (in terms of L) that minimizes the sum of the areas of the triangle
and square.

Answer: 3L
4
√
3+9

, or equivalently, (9−4
√
3)L

11 .

Solution: Let t be the side length of the triangle and s be the side length of the square. Summing the
perimeters yields 3t + 4s = L, thus s = L−3t

4 . The area of the triangle is 1
2(base)(height), where the

base is t and the height is
√
3
2 t (this can be seen by dividing the equilateral triangle into two equivalent

right triangles and applying the Pythagorean theorem to one of them). So the equilateral triangle has

area
√
3
4 t2 and the square has area s2= (L−3t)2

16 . Summing these gives the total area of the triangle and
square as a function of t:

A(t) =

√
3

4
t2 +

(L− 3t)2

16
.

Expanding and simplifying yields the quadratic function

A(t) = at2 + bt + c,

where a = 9+4
√
3

16 , b = −6L
16 , and c = L2

16 . The graph of A(t) is a concave up parabola, so A(t) attains
a minimum value at the vertex, where

t = − b

2a
=

3L

9 + 4
√

3
=

(9− 4
√

3)L

11
.

3. Suppose a, b, and c are positive real numbers such that a < b < c < a + b. Find the area (in terms of
a, b, and c) of the 5-sided polygon bounded by the lines x = 0, x = a, y = 0, y = b, and x + y = c.

Answer: ab− 1
2(a + b− c)2

Solution: The line x + y = c intersects the horizontal line y = b at the point (c− b, b) and intersects
the vertical line x = a at the point (a, c− a). We seek the area A of the 5-sided polygon with vertices
(0, 0), (a, 0), (a, c− a), (c− b, b), (0, b). This can be obtained by subtracting the area T of the triangle
with vertices (a, b), (c − b, b), (a, c − a) from the area R of the rectangle with vertices (0, 0), (a, 0),
(a, b), (0, b). Thus

A = R− T

= ab− 1

2
(base)(height)

= ab− 1

2
(a− (c− b))(b− (c− a))

= ab− 1

2
(a + b− c)2.
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4. Two players alternate shooting free throws in basketball. For each attempt, player 1 has a 1/3
probability of success and player 2 has a 1/4 probability of success. What is the probability that
player 1 succeeds before player 2?

Answer: 2
3

Solution: Let E be the event of interest: player 1 succeeds before player 2. Let Aj be the event that
player 1 succeeds first on the jth shot. Note that A1, A2, A3, . . . are disjoint sets and E =

⋃∞
j=1Aj .

Thus the probability of event E is given by

P (E) = P (
∞⋃
j=1

Aj) =
∞∑
j=1

P (Aj).

Player 1 has a 1
3 probability of succeeding on his first shot, so P (A1) = 1

3 . For A2 to occur, player 1 and
player 2 must both miss their 1st shot and player 1 must make his 2nd shot. Thus P (A2) = (23)(34)(13).
More generally, for Aj to occur, player 1 and player 2 must both miss their 1st j− 1 shots, and player
1 must make his jth shot. Thus

P (Aj) =

(
2

3

)j−1(3

4

)j−1(1

3

)
=

1

3

(
1

2

)j−1
.

This yields

P (E) =

∞∑
j=1

P (Aj) =

∞∑
j=1

1

3

(
1

2

)j−1
=

1

3

(
1

1− 1
2

)
=

2

3
,

where we have used the geometric series 1 + r + r2 + r3 + · · · = 1
1−r when |r| < 1.

Assuming the series converges, this result can also be obtained by writing

P (E) =
1

3

(
1 +

(
1

2

)
+

(
1

2

)2

+

(
1

2

)3

+ · · ·

)

=
1

3
+

(
1

2

)(
1

3

)(
1 +

(
1

2

)
+

(
1

2

)2

+

(
1

2

)3

+ · · ·

)
=

1

3
+

1

2
P (E),

and then solving for P (E).

The same equation for P (E) can be obtained by using conditional probability. Let P (A|B) denote the

probability of event A given that event B has occurred. This is defined as P (A|B) = P (A∩B)
P (B) . Let Ac

1

denote the complement of A1. Noting that E ∩A1 = A1 since A1 ⊂ E, we have

P (E) = P (E ∩ (A1 ∪Ac
1))

= P ((E ∩A1) ∪ (E ∩Ac
1))

= P (A1 ∪ (E ∩Ac
1))

= P (A1) + P (E ∩Ac
1)

= P (A1) + P (Ac
1|E)P (E).

Given that event E occurs, A1 will not occur if and only if player 1 and player 2 both miss their 1st
shot. Thus

P (Ac
1|E) =

(
2

3

)(
3

4

)
=

1

2
.

Recalling that P (A1) = 1
3 , we obtain the same equation for P (E) that we saw before:

P (E) =
1

3
+

1

2
P (E),

whose solution is P (E) = 2
3 .
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5. A triangle has vertices A, B, and C. Suppose point D is on the line segment AC such that AB = AD.
If ∠ABC − ∠ACB = 30◦, find ∠CBD.

C B

A

D

Answer: 15◦

Solution: Let x = ∠CBD, y = ∠ABD and z = ∠ACB. Then ∠ABC = x+ y, and we are given that

x + y − z = 30◦. (1)

Triangle ABD is isosceles, and AB = AD implies ∠ABD = ∠BDA = y. Since ∠BDA and ∠BDC
are supplementary, we must have ∠BDC = 180◦−y. Summing the angles in triangle BDC then yields

x + (180◦ − y) + z = 180◦,

or equivalently
x− y + z = 0◦. (2)

Adding equations (1) and (2) yields 2x = 30◦, hence x = 15◦.

6. Find a positive real number x such that 2[x] + [1− x] =
19

x
, where [x] denotes the greatest integer less

than or equal to x.

Answer: 19
4 = 4.75

Solution: We consider 2 cases: either x is an integer or it is not.

First, suppose x is an integer. Then [x] = x and [1− x] = 1− x, so x must satisfy the equation

2x + 1− x =
19

x

which implies
x2 + x− 19 = 0.

The quadratic formula gives x = −1±
√
77

2 , which shows that x cannot be an integer.

Now suppose x is a positive number that is not an integer. Then we can write x = n+ h where n is a
nonnegative integer and 0 < h < 1. This implies

[x] = [n + h] = n

and
[1− x] = [1− n− h] = [−n + (1− h)] = −n

since 0 < 1− h < 1. Our equation then becomes

2n +−n =
19

n + h
,

which can be rewritten as
n(n + h) = 19.

We can determine the integer n from the following estimates:

n2 < n(n + h) = 19
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and
(n + 1)2 > n(n + h) = 19,

which together yield
3 <
√

19− 1 < n <
√

19 < 5.

The only integer n that satisfies the above condition is n = 4. We can then determine h by solving

4(4 + h) = 19

which yields h = 19
4 − 4 = 3

4 . Thus x = n + h = 4 + 3
4 = 19

4 = 4.75.

7. Find the number of terminating zeros the number (100!)(5050) has after being multiplied out. (For
example, the number 503,000,000 has 6 terminating zeros.)

Answer: 124

Solution: The number of terminating zeros is the same as the number of factors of 10, i.e., the number
of times both 2 and 5 occur in the factorization. We have

5050 = (2 · 52)50 = (250)(5100)

and
100! = (100)(99)(98) · · · (2)(1).

Let’s count factors of 5 first. There are 100 factors of 5 in 5050. To count the factors of 5 in 100!, note
that the set of integers between 1 and 100 inclusive that are divisible by 5 is

S1 = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}

which has |S1| = [100/5] = 20 elements, where [x] denotes the greatest integer less than or equal to x.

The set of integers between 1 and 100 inclusive that are divisible by 52 is

S2 = {25, 50, 75, 100},

which has |S2| = [20/5] = 4 elements.

There are no integers between 1 and 100 inclusive that are divisible by 5n for n ≥ 3. Thus the number
of factors of 5 in 100! is |S1|+ |S2| = 24. Adding this to the 100 factors of 5 from 5050, we get a total
of 124 factors of 5 in (100!)(5050). If we can also find at least 124 factors of 2, then (100!)(5050) will
have 124 terminating zeros.

Let’s count the factors of 2. There are clearly 50 factors of 2 in 5050. Let Tn be the set of integers
between 1 and 100 inclusive that are divisible by 2n, and let |Tn| be the number of elements in Tn.
Then

T1 = {2, 4, 6, 8, ..., 100}, |T1| = [100/2] = 50,

T2 = {4, 8, 12, ..., 100}, |T2| = [50/2] = 25,

T3 = {8, 16, 24, ..., 96}, |T3| = [25/2] = 12,

T4 = {16, 32, 48, ..., 96}, |T4| = [12/2] = 6,

T5 = {32, 64, 96}, |T5| = [6/2] = 3,

T6 = {64}, |T6| = [3/2] = 1.

So the number of factors of 2 in 100! is

6∑
n=1

|Tn| = 50 + 25 + 12 + 6 + 3 + 1 = 97.

Thus the total number of factors of 2 in (100!)(5050) is 50+97=147, which is more than enough to
match the 124 factors of 5. Hence there are 124 factors of 10 in (100!)(5050), which implies 124
terminating zeros.
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8. Two trains head towards each other on the same straight track. The 1st train has a constant speed of
45 km/h and the 2nd train has a constant speed of 30 km/h. When the trains are 50 km apart, a bird
flies from the front of the 1st train towards the 2nd, at a constant speed of 60 km/h. When the bird
reaches the 2nd train, it immediately switches direction and flies back towards the 1st train. The bird
repeatedly flies back and forth between the two trains, always flying at a constant speed of 60 km/h.

(a) How many trips can the bird make from one train to the other before the two trains collide?

(b) What is the total distance the bird travels?

Answer: (a) infinity (b) 40 km

Solution: Let’s work part (b) first.The distance between the trains decreases at a constant rate of

45 km/h + 30 km/h = 75 km/h.

Starting out 50 km apart, the trains will collide after

50 km

75 km/h
=

2

3
h.

In this time the bird will travel a total distance of

(60 km/h)(
2

3
h) = 40 km.

For part (a), let’s try computing the time for each trip and then add them up to see how many trips
the bird can take in the 2

3 h before the trains collide. To generalize our analysis, let u, v, and w denote
the speeds of train 1, train 2, and the bird, respectively, and let s0 denote the initial distance between
the trains. In our problem,

u = 45 km/h, v = 30 km/h, w = 60 km/h, s0 = 50 km.

Let tn denote the duration of the bird’s nth trip (for odd n the bird flies from train 1 to train 2, for
even n the bird flies from train 2 to train 1).

On the 1st trip (bird flies from train 1 to train 2), the distance from the bird to train 2 is initially s0
and decreases at a constant rate of w + v. Thus

t1 =
s0

w + v
.

On the 2nd trip (bird flies from train 2 to train 1), the distance from the bird to train 1 is initially
s1 = (w− u)t1 (the difference between the distances that the bird and train 1 traveled during trip 1),
and this distance decreases at a constant rate of w + u. Thus

t2 =
s1

w + u
=

w − u

w + u
t1.

On the 3rd trip (bird flies from train 1 to train 2), the distance from the bird to train 2 is initially
s2 = (w − v)t2 (the difference between the distances that the bird and train 2 traveled during trip 2),
and this distance decreases at a constant rate of w + v. Thus

t3 =
s2

w + v
=

w − v

w + v
t2.

Continuing with simalar arguments, we obtain the general result that for any integer n ≥ 2,

tn =

{
(w−vw+v )tn−1 for n odd

(w−uw+u)tn−1 for n even.
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Combining the previous results, we obtain the recursion relation for any integer n ≥ 3:

tn = rtn−2, t1 =
s0

w + v
, t2 =

w − u

(w + u)(w + v)
s0,

where

r =
(w − u)(w − v)

(w + u)(w + v)
.

Iterating the recursion relation (treating odd and even terms separately) yields, for any integer j ≥ 2,

t2j−1 = t1r
j−1, t2j = t2r

j−1.

We conjecture that the bird can make an infinite number of trips before the trains collide. To verify
this, we compute the sum:

∞∑
n=1

tn =
∞∑
j=1

t2j−1 +
∞∑
j=1

t2j

=
∞∑
j=1

t1r
j−1 +

∞∑
j=1

t2r
j−1

= (t1 + t2)
∞∑
j=1

rj−1

∗
= (t1 + t2)

(
1

1− r

)

=

(
s0

w + v
+

w − u

(w + u)(w + v)
s0

) 1

1− (w−u)(w−v)
(w+u)(w+v)


=

s0
u + v

=
50 km

45 km/h + 30 km/h

=
2

3
h,

which is equal to the total time before the two trains collide as found in the solution to part (b). Thus
the bird can make an infinite number of trips before the trains collide.

Note (∗): We used the geometric series result: 1 + r + r2 + r3 + · · · = 1
1−r when |r| < 1.

Similar to the computation above, we can sum the distances traveled by each train on each of the
bird’s trips to verify that

∞∑
n=1

(u + v)tn = s0.
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9. Suppose there are 18 socks, 5 of which are black, 6 of which are brown, and 7 of which are gray. You
pick two socks out at a time (sampling without replacement), and each set of two forms a pair. So you
just form 9 pairs of socks at random without worrying about matching. What is the expected value of
the number of matching pairs? In other words, if you repeated this experiment a very large number
of times, what would be the average number of matching pairs?

Answer: 46
17

Solution: The expected value of a random variable X that takes discrete values x1, x2, x3, ..., with
probabilities P (X1 = x1), P (X2 = x2), P (X3 = x3), ..., respectively, is

E(X) =
∑
i

xiP (Xi = xi).

For i = 1, 2, ..., 9, define the random variable Xi by

Xi =

{
1 if the ith pair matches

0 if the ith pair doesn’t match.

Then the total number of matching pairs is given by the random variable X defined by

X =
9∑

i=1

Xi.

First let’s compute the expected value of Xi, for i = 1, 2, ..., 9:

E(Xi) = (1)P (Xi = 1) + (0)P (Xi = 0)

= P (Xi = 1).

So we need to find P (Xi = 1), the probability that the ith pair is a match. The total number of ways
to choose 2 socks from 18 is(

18
2

)
=

18!

(2!)(16!)
=

(18)(17)

2
= (9)(17) = 153.

For the ith pair to match, it must have either 2 black, 2 brown, or 2 gray socks.

The number of ways of choosing 2 black socks from the 5 available is(
5
2

)
=

5!

(2!)(3!)
=

(5)(4)

2
= 10.

The number of ways of choosing 2 brown socks from the 6 available is(
6
2

)
=

6!

(2!)(4!)
=

(6)(5)

2
= 15.

The number of ways of choosing 2 gray socks from the 7 available is(
7
2

)
=

7!

(2!)(5!)
=

(7)(6)

2
= 21.

Thus there are 10+15+21 = 46 possible ways the ith pair can match, out of a total of 153 possibilities,
so the probability that the ith pair is a match is

P (Xi = 1) =
46

153
.
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Therefore, for i = 1, 2, ..., 9,

E(Xi) = P (Xi = 1) =
46

153
.

The expected value of the total number of matching pairs is then

E(X) = E

(
9∑

i=1

Xi

)
=

9∑
i=1

E(Xi) =

9∑
i=1

46

153
= 9

(
46

153

)
=

46

17
.

An alternate approach for computing P (Xi = 1) uses conditional probability. Let P (A|B) denote the

probability of event A given that event B has occurred. This is defined as P (A|B) = P (A∩B)
P (B) .

Let the random variables Y1 and Y2 represent the colors of each sock in the ith pair, and let C denote
the set of possible colors:

C = {black, brown, gray}.

Then the probability that the ith pair is a match can be written as

P (Xi = 1) =
∑
c∈C

P ((Y1 = c) ∩ (Y2 = c))

=
∑
c∈C

P (Y2 = c|Y1 = c)P (Y1 = c)

=

(
4

17

)(
5

18

)
+

(
5

17

)(
6

18

)
+

(
6

17

)(
7

18

)
.

As before, the expected value of the total number of matching pairs is then

P (X) =

9∑
i=1

E(Xi)

=

9∑
i=1

P (Xi = 1)

= 9P (Xi = 1)

=
(4)(5) + (5)(6) + (6)(7)

(17)(2)

=
46

17
.
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10. Consider a 1× n array of squares covered by tiles that are each 1× 1. Each tile is either blue, red, or
yellow. Yellow tiles always occur at least two in a row. There are no restrictions on the number of blue
or red tiles that are consecutive. Here are some examples of sequences that satisfy the constraints:

brbbyyr yybyyryyrr byyrryyyrrb bbrrbbrbr

And some that don’t
yybbrry brrbry

Find the number of sequences that satisfy the constraints for n = 7 squares.

Answer: 527

Solution: Let f(n) denote the number of sequences that satisfy the given conditions for n tiles. We
consider some specific cases for n.

Case n = 1: There are 21 sequences without yellow (b, r), and 0 sequences that have yellow. Thus

f(1) = 2 + 0 = 2.

Case n = 2: There are 22 sequences without yellow (bb, rr, br, rb) and 1 sequence with yellow (yy).
Thus

f(2) = 4 + 1 = 5.

Case n = 3: There are 23 sequences without yellow (bbb, bbr, brb, rbb, rrb, rbr, brr, rrr), 4 sequences
with 2 yellow (yyb, yyr, byy, ryy) and 1 sequence with 3 yellow (yyy). Thus

f(3) = 8 + 4 + 1 = 13.

Case n = 4: There are 24 sequences without yellow, 12 sequences with 2 yellow (yyxx, xyyx, xxyy),
4 sequences with 3 yellow (yyyx, xyyy) and 1 sequence with 4 yellow (yyyy), where each x could be
r or b. Thus

f(4) = 16 + 12 + 4 + 1 = 33.

Now let’s look for a recursion relation. Suppose f(1), f(2), . . ., f(n − 1) have been determined.
Consider a sequence with n tiles. If the nth tile is r or b, then the previous n − 1 tiles must be a
sequence that satisfies the given conditions. Thus there are f(n − 1) valid sequences of n tiles that
end in r, and another f(n− 1) valid sequences of n tiles that end in b.

To aid in visualization, we let r denote red, b denote blue, y denote yellow, x could be red or blue,
and z could be red, blue, or yellow (assuming the required conditions are satisfied). We use subscripts
to indicate order of the tiles in a sequence. With this notation, an n tile sequence that ends in red or
blue has the form

z1z2z3 . . . zn−3zn−2zn−1xn,

and there are 2f(n− 1) such sequences that satisfy the required conditions.

If an n tile sequence ends in y, then both the nth and (n− 1)th tiles must each be y. Such sequences
have the form

z1z2z3 . . . zn−3zn−2yn−1yn.

Looking at only the first n − 2 tiles of such a sequence, either zn−2 is an isolated y (meaning zn−2
is y and zn−3 is not y), or zn−2 is not an isolated y (meaning either zn−2 is not y or zn−2 and zn−3
are both y). In the latter case (zn−2 not an isolated y), the first n − 2 tiles form a valid (n − 2) tile
sequence, hence there are f(n− 2) of these sequences. In the former case (zn−2 is an isolated y), the
sequence has the form

z1z2z3 . . . zn−4xn−3yn−2yn−1yn.
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Since the first n − 4 tiles of such a sequence must satisfy the required conditions, and xn−3 could be
r or b, there are 2f(n− 4) sequences of this form.

To summarize, from the set of valid n tile sequences, 2f(n− 1) of them end in r or b, and f(n− 2) +
2f(n− 4) of them end in y. Thus we obtain the recursion relation for n ≥ 5:

f(n) = 2f(n− 1) + f(n− 2) + 2f(n− 4), f(1) = 2, f(2) = 5, f(3) = 13, f(4) = 33.

We can then easily compute:

f(5) = 2f(4) + f(3) + 2f(1) = 2(33) + 13 + 2(2) = 83

f(6) = 2f(5) + f(4) + 2f(2) = 2(83) + 33 + 2(5) = 209

f(7) = 2f(6) + f(5) + 2f(3) = 2(209) + 83 + 2(13) = 527

Thus the number of sequences with n = 7 tiles that satisfy the required conditions is 527.

An alternate method of solution is to use brute force counting for 7 tiles, based on how many yellow
tiles are in the sequence. In some of the cases below we make use of the fact that given positive
integers k and m, the number of solutions in {0, 1, 2, 3, . . .} of the equation x1 + x2 + · · ·+ xk = m is

C(m + k − 1, k − 1) = (m+k−1)!
(k−1)!(m!) .

• 0 yellow: 27 = 128 sequences (each of the 7 tiles is either red or blue).

• 1 yellow: 0 sequences (can’t have just 1 yellow).

• 2 yellow: 6(25) = 192 sequences (6 choices for where yy goes, 25 choices of r or b for 5 remaining
tiles).

• 3 yellow: 5(24) = 80 sequences (5 choices for where yyy goes, 24 choices of r or b for 4 remaining
tiles).

• 4 yellow: 10(23) = 80 sequences. They have the form X1yyX2yyX3, where Xi denotes a block of
xi tiles that are r or b, where each xi ∈ {0, 1, 2, 3} and x1 + x2 + x3 = 3. There are C(5, 2) =

5!
(2!)(3!) = 10 solutions of this equation and 23 choices for the 3 non-yellow tiles.

• 5 yellow: 9(22) = 36 sequences. One type has the form X1yyX2yyyX3, where Xi denotes a
block of xi tiles that are r or b, where each xi ∈ {0, 1, 2} and x1 + x2 + x3 = 2. There are
C(4, 2) = 4!

(2!)(2!) = 6 solutions of this equation. The other type has the form X1yyyX2yyX3, which
clearly has the same number of sequences. Including both types double counts the sequences with
x2 = 0, i.e. sequences of the form X1yyyyyX3, where x1 +x3 = 2, which has C(3, 1) = 3!

(1!)(2!) = 3

solutions. Thus we have 2(6)− 3 = 9 choices for the placement of yellow tiles and 22 choices for
the remaining 2 non-yellow tiles.

• 6 yellow: (5)(21) = 10 sequences. One type has the form X1yyX2yyX3yyX4 where Xi denotes
a block of xi tiles that are r or b, where each xi ∈ {0, 1} and x1 + x2 + x3 + x4 = 1. There are
C(4, 3) = 4!

(3!)(1!) = 4 solutions of this equation. The other type has the form X1yyyX2yyyX3

where xi ∈ {0, 1} and x1 +x2 +x3 = 1. There are C(3, 2) = 3!
(2!)(1!) = 3 solutions of this equation.

Including both types double counts the sequences of the form X1yyyyyX3, where x1 + x3 = 1,
which has C(2, 1) = 2!

(1!)(1!) = 2 solutions. Thus we have 4 + 3− 2 = 5 choices for the placement

of yellow tiles and 21 choices for the 1 remaining non-yellow tile.

• 7 yellow: (1)(20) = 1 sequence (namely yyyyyyy).

The total number of 7 tile sequences satisfying the required conditions is thus

128 + 0 + 192 + 80 + 80 + 36 + 10 + 1 = 527.


